Intuition Test: Correlations between Random Events

Mik Zlatin

March 13, 2022

Intro

These puzzles are meant to test your intuition for correlations between random events, and to provide at least one example of a situation where an intuitive argument leads to an incorrect result.

Puzzles

2.1 A die game

Alice and Bob are playing dice. Alice secretly rolls a fair die until she gets a 2.

Bob says: "The expected number of rolls you made is 6."

Alice says: "Actually, I only rolled even numbers. Does that change your belief?"

Bob ponders this for a minute. Then says: "Yes! Given the information that you only rolled even numbers, the expected number of rolls you made should be 3."

Question: Is Bob correct?

If not, is the true expected number more or less than 3?

2.2 Random graphs

A graph G on n vertices is sampled by including each edge independently with probability p, and then put in a box out of eyesight.

You find yourself idly wondering whether G is 3-colorable. Suddenly, a truth-telling genie appears and informs you that G has a Hamiltonian cycle.

Question: Does this influence your probability that G is 3-colorable?

Is it more likely, less likely, or the same?

2.3 Partially ordered sets

Let P be a partially ordered set (poset) on n elements. A linear extension of P is a total order on n which is consistent with the partial order P.

We will pick a linear extension of P, uniformly at random.

Now fix three elements x, y and z which are incomparable in P. Let A be the event that, in the linear extension, we have x < y. Similarly, let B be the event that x < z in the linear extension.

Question 1: Are A and B positively correlated?

Does your answer hold for any poset?

Follow up question! Now suppose we fix four elements w, x, y, z which are incomparable in P.

Let C be the event that z < x < w in the linear extension of P. Let D be the event that z < y < w in the linear extension of P.

Question 2: Are C and D positively correlated?

There is an intuitive argument that both of these pairs of random events should be positively correlated. However, I will give you one hint: For one of the two questions above, the answer is "yes". For the other, the answer is "not necessarily".

Can you tell which is which?